Content

- Terminology 266
- Calculation of heatsinks 266
- Efficiency at Full Load 266
- Input and Output Ripple 266
- Input to Output Isolation 266
- Input Voltage Range 266
- Insulation Resistance 266
- Isolation Capacitance 266
- Line Voltage Regulation 266
- Load Voltage Regulation 266
- Mean Time between Failure (MTBF) 266
- Operating temperature range 267
- No Load Power Consumption 266
- Noise 267
- Output Voltage Accuracy 266
- Switching Frequency 266
- Temperature above Ambient 266
- Temperature Drift 266

- 3V/5V Logic Mixed Supply Rails 273
- Conducted and Radiated Emissions 277
- Connecting DC-DC Converters in Parallel 269
- Connecting DC-DC Converters in Series 269
- EIA-232 Interface 273
- EMC Considerations 274
- Filtering 269
- Input Voltage Drop-Out (brown-outs) 272
- Interpretation of DC-DC Converter EMC Data 276
- Isolated Data Acquisition System 274
- Isolation 268
- Isolation Capacitance and Leakage Current 270
- LCD Display Bias 273

- Limiting Inrush Current 270
- Line Impedance Stabilisation Network (LISN) 277
- Line Spectra of DC-DC Converters 278
- Long Distance Supply Lines 272
- Maximum Output Capacitance 270
- No Load Over Voltage Lock-Out 272
- Output Filtering calculation 270
- Overload Protection 271
- Power Supply Considerations 276
- Recommended Values for Paralleled DC-DC Converters 269
- Settling Time 270
- Shielding 278
- Temperature Performance of DC-DC Converters 278
- Transfer Moulded Surface Mount DC-DC Converters 279
- Adhesive Placement 280
- Adhesive Requirements 280
- Cleaning 281
- Component Alignment 279
- Component Materials 279
- Component Placement 279
- Production Guideline Application Note 279
- Recommended Solder Reflow Profile 280
- Solder Pad Design 279
- Solder Reflow Profile 279

- Custom DC-DC Converters 281

Powerline – Definitions and Testing

- Ambient Temperature 288
- Break-Down Voltage 288
- Current Limiting 287
- Efficiency 286
- Fold Back Current Limiting 287
- General Test Set-Up 284
- Input Voltage Range 285
- Isolation 288
- Line Regulations 285
- Load Regulation 286
- Operating Temperature Range 288
- Output Ripple and Noise 286
- Output Ripple and Noise (continued) 287
- Output Voltage Accuracy 285
- Output Voltage Trimming 289
- PI Filter 285
- Storage Temperature Range 288
- Switching Frequency 286
- Transient Recovery Time 287
- Temperature Coefficient 288
- Voltage Balance 285
DC-DC Converter Applications

Terminology
The data sheet specification for DC-DC converters contains a large quantity of information. This terminology is aimed at ensuring that the user is interpreting the data provided correctly and obtaining the necessary information for their circuit application.

Input Voltage Range
The range of input voltage that the device can tolerate and maintain functional performance.

Load Voltage Regulation
The change in output voltage over the specified change in output load. Usually specified as a percentage of the nominal output voltage, for example, if a 1V change in output voltage is measured on a 12V output device, load voltage regulation is 8.3%. For unregulated devices the load voltage regulation is specified over the load range – 10% to 100% of full load.

Line Voltage Regulation
The change in output voltage for a given change in input voltage, expressed as percentages. For example, assume a 12V input, 5V output device exhibited a 0.5V change at the output for a 1.2V change at the input, line regulation would be 1 %/%

Output Voltage Accuracy
The proximity of the output voltage to the specified nominal value. This is given as a tolerance envelope for unregulated devices with the nominal input voltage applied. For example, a 5V specified output device at 100% load may exhibit a measured output voltage of 4.75V, i.e. a voltage accuracy of ±5%.

Input and Output Ripple
The amount of voltage drop at the input, or output between switching cycles. The value of voltage ripple is a measure of the storage ability of the filter capacitors.

Input to Output Isolation
The dielectric breakdown strength test between input and output circuits. This is the isolation voltage the device is capable of withstanding for a specified time, usually 1 second (details please see chapter “Isolation Voltage vs. Rated Working Voltage”).

Insulation Resistance
The resistance between input and output circuits. This is usually measured at 500V DC.

Efficiency at Full Load
The ratio of power delivered from the device to power supplied to the device when the part is operating under 100% load conditions.

Temperature Drift
The change in voltage, expressed as a percentage of the nominal, per degree change in ambient temperature. This parameter is related to several other temperature dependent parameters, mainly internal component drift.

Temperature above Ambient
The temperature rise developed by the device under full load conditions. This is related to efficiency.

Switching Frequency
The nominal frequency of operation of the switching circuit inside the DC-DC converter. The ripple observed on the input and output pins is usually twice the switching frequency, due to full wave rectification and the push-pull configuration of the driver circuit.

No Load Power Consumption
This is a measure of the switching circuits requirement to function; it is determined with zero output load and is a limiting factor for the total efficiency of the device.

Isolation Capacitance
The input to output coupling capacitance. This is not actually a capacitor, but the parasitic capacitive coupling between the transformer primary and secondary windings. Isolation capacitance is typically measured at 1 MHz to reduce the possibility of the on-board filter capacitors affecting the results.

Mean Time Between Failure (MTBF)
These figures are calculated expected device lifetime figures using the hybrid circuit model of MIL-HDBK-217F. POWERLINE converters also can use BELLCORE TR-NWT-000332 for calculation of MTBF. The hybrid model has various accelerating factors for operating environment (\(\tau_E \)), maturity factor (\(\tau_M \)), screening (\(\tau_S \)), hybrid function (\(\tau_H \)) and a summation of each individual component characteristic (\(\tau_D \)). The equation for the hybrid model is then given by:

\[
\lambda = \sum (N_L \lambda_C (1 + 0.2\tau_E) \tau_L \tau_F \tau_D) \text{failures in 10}^6 \text{ hours}
\]

The MTBF figure is the reciprocal of this value. In the data book all figures for MTBF are given for the ground benign (GB) environment (\(\tau_E = 0.5 \)); this is considered the most appropriate for the majority of applications in which these devices are likely to be designed in. However, this is not the only operating environment these devices can be used for, hence those users wishing to incorporate these devices into a more severe environment can calculate the predicted MTBF from the following data.

The MIL-HDBK-217F has military environments specified, hence some interpretation of these is required to apply them to standard commercial environments. Table 1 gives approximate cross references from MIL-HDBK-217F descriptions to close commercial equivalents. Please note that these are not implied by MIL-HDBK-217F, but are our interpretation. Also we have reduced the number of environments from 14 to 6, which are most appropriate to commercial applications. For a more detailed understanding of the environments quoted and the hybrid model, it is recommended that a full copy of MIL-HDBK-217F is obtained.

It is interesting to note that space flight and ground benign have the same environment factors. It could be suggested that the act of achieving space flight should be the determining environmental factor (i.e. missile launch).

The hybrid model equation can therefore be rewritten for any given hybrid, at a fixed temperature, so that the environmental factor is the only variable:

\[
\lambda = k (1 + 0.2 \tau_E)
\]

The MTBF values for other environment factors can therefore be calculated from the ground benign figure quoted at each temperature point in the data book. Hence predicted MTBF values for other environments can be calculated very quickly. All the values will in general be lower and, since the majority of the mobile environments have the same factor, a quick divisor can be calculated for each condition. Therefore the only calculation necessary is to divide the quoted MTBF fig. by the divisor given in table 2.

www.recom-international.com
DC-DC Converter Applications

<table>
<thead>
<tr>
<th>Environment</th>
<th>π_E Symbol</th>
<th>MIL-HDBK-271F Description</th>
<th>Commercial Interpretation or Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground Benign</td>
<td>GB</td>
<td>Non-mobile, temperature and humidity controlled environments readily accessible to maintenance</td>
<td>Laboratory equipment, test instruments, desktop PC’s, static telecoms</td>
</tr>
<tr>
<td>Ground Mobile</td>
<td>GM</td>
<td>Equipment installed in wheeled or tracked vehicles and equipment manually transported</td>
<td>In-vehicle instrumentation, mobile radio and telecoms, portable PC’s</td>
</tr>
<tr>
<td>Naval Sheltered</td>
<td>NS</td>
<td>Sheltered or below deck equipment on surface ships or submarines</td>
<td>Navigation, radio equipment and instrumentation below deck</td>
</tr>
<tr>
<td>Aircraft Inhabited Cargo</td>
<td>AIC</td>
<td>Typical conditions in cargo compartments which can be occupied by aircrew</td>
<td>Pressurised cabin compartments and cockpit, in flight entertainment and non-safety critical applications</td>
</tr>
<tr>
<td>Space Flight</td>
<td>SF</td>
<td>Earth orbital. Vehicle in neither powered flight nor in atmospheric re-entry</td>
<td>Orbital communications satellite, equipment only operated once in-situ</td>
</tr>
<tr>
<td>Missile Launch</td>
<td>ML</td>
<td>Severe conditions relating to missile launch</td>
<td>Severe vibrational shock and very high accelerating forces, satellite launch conditions</td>
</tr>
</tbody>
</table>

Table 1: Interpretation of Environmental Factors

<table>
<thead>
<tr>
<th>Environment</th>
<th>π_E Symbol</th>
<th>π_E Divisor Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground Benign</td>
<td>GB</td>
<td>0.5 1.00</td>
</tr>
<tr>
<td>Ground Mobile</td>
<td>GM</td>
<td>4.0 1.64</td>
</tr>
<tr>
<td>Naval Sheltered</td>
<td>GNS</td>
<td>4.0 1.64</td>
</tr>
<tr>
<td>Aircraft Inhabited Cargo</td>
<td>AIC</td>
<td>4.0 1.64</td>
</tr>
<tr>
<td>Space Flight</td>
<td>SF</td>
<td>0.5 1.00</td>
</tr>
<tr>
<td>Missile Launch</td>
<td>ML</td>
<td>12.0 3.09</td>
</tr>
</tbody>
</table>

Table 2: Environmental Factors

Noise

Input conducted noise is given in the line conducted spectra for each DC-DC converter (see EMC issues for further details). Noise is affected significantly by PCB layout, measurement system configuration, terminating impedance etc., and is difficult to quote reliably and with any accuracy other than via a spectrum analysis type plot. There will be some switching noise present on top of the ripple, however, most of this is easily reduced by use of small capacitors or filter inductors, as shown in the application notes.

Operating temperature range:

Operating temperature range of the converter is limited due to specifications of the components used for the internal circuit of the converter.

The diagram for temperature derating shows the safe operating area (SOA) within the device is allowed to operate.

Up to a certain temperature 100% power can be drawn from the device, above this temperature the output power has to be less to ensure function and guarantee specifications over the whole lifetime of the converter.

These temperature values are valid for natural convection only. If the converter is used in a closed case or in a potted PCB board higher temperatures will be present in the nearer area around the converter because the convection may be blocked.

If the same power is also needed at higher temperatures higher wattage series should be chosen or if the converter has a metal case using a heatsink may be considered.

Calculation of heatsinks:

All converters in metal-case can have a heat-sink mounted on so the heat generated by the converters internal power dissipation P_d can be remove. The general specification of the whole thermal system incl. heat-sink is it’s thermal resistance $R_{th\text{ case-ambient}}$ Via this the maximal allowed output power can be extended at higher ambient temperatures $T_{ambient}$ still meeting the power-deratings prescriptions.

$$P_d = P_{in} - P_{out} = \frac{P_{out}}{\text{Efficiency}} - P_{out}$$

$$R_{th\text{ case-ambient}} = \frac{T_{case} - T_{ambient}}{P_d}$$

Figure 1: Standard Isolated Configurations

Figure 2: Alternative Supply Configurations

www.recom-international.com
Isolation

One of the main features of the majority of Recom International Power GmbH DC-DC converters is their high galvanic isolation capability. This allows several variations on circuit topography by using a single DC-DC converter.

The basic input to output isolation can be used to provide either a simple isolated output power source, or to generate different voltage rails, and/or dual polarity rails (see figure 1).

These configurations are most often found in instrumentation, data processing and other noise sensitive circuits, where it is necessary to isolate the load and noise presented to the local power supply rails, from that of the entire system. Usually local supply noise appears as common mode noise at the converter and does not pollute the main system power supply rails.

The isolated positive output can be connected to the input ground rail to generate a negative supply rail if required. Since the output is isolated from the input, the choice of reference for the output side can be relatively arbitrary, for example an additional single rail can be generated above the main supply rail, or offset by some other DC value (see figure 2).

Isolation Voltage vs. Rated Working Voltage

The isolation voltage given in the datasheet is valid for 1 second flash tested only. If a isolation barrier is required for longer or infinite time the Rated Working Voltage has to be the criteria.

Conversion of Isolation Voltage to Rated Working Voltage can be done by using this table or graph.

Example: RP30-2405SEW starts derating without heatsink at +65°C but the desired operation is 30W at +75°C so the size of the heatsink has to be calculated.

\[P_{in} = 30 \text{ W} \]
\[\text{Efficiency} = 88\% \]
\[P_{out} = \frac{P_{in}}{\text{Efficiency}} = \frac{30 \text{ W}}{88\%} = 34.1 \text{ W} \]
\[T_{case} = 100^\circ \text{C} \] (max. allowed case temperature)
\[T_{ambient} = 75^\circ \text{C} \]
\[R_{heatsink-case} = \frac{100^\circ \text{C} - 75^\circ \text{C}}{4.1 \text{ W}} = R_{heatsink-case} = 6.1^\circ \text{C/W} \]

So it has to be ensured that the thermal resistance between case and ambient is 6.1°C/W max.

When mounting a heatsink on a case there is a thermal resistance \(R_{\text{case-heat sink}} \) between case and heatsink which can be reduced by using thermal conductivity paste but cannot be eliminated totally.

\[R_{\text{heatsink-case}} = R_{\text{heatsink-case}} + R_{\text{heatsink-ambient}} \]

If a heatsink will be mounted on the converter without electrical isolation to the (floating) case it’s thermal resistance has to be at least:

\[R_{\text{heatsink-case}} = R_{\text{heatsink-case}} + R_{\text{heatsink-ambient}} = 6.1^\circ \text{C/W} \]

With this value you can choose a heatsink from it’s suppliers.

If normal convection heatsinks do not meet this value or the dimensions would get too big a heatsink with fan may be the solution. But the fan requires also power so the efficiency of the whole converter application would suffer from this.

In most cases choosing the next higher wattage-series and using power-decreasing via derating may be the more efficient solution.

Efficiency = 88% max.

\[P_{out} = 30 \text{ W} \]
\[T_{case} = 100^\circ \text{C} \] (max. allowed case temperature)
\[T_{ambient} = 75^\circ \text{C} \]
\[\text{Efficiency} = \frac{30 \text{ W}}{100^\circ \text{C} - 75^\circ \text{C}} = 6.1^\circ \text{C/W} \]

If a heatsink will be mounted on case without thermal conductivity paste

\[R_{\text{heatsink-case}} = \text{ca. 1…2 }^\circ \text{C/W} \]

Heatsink mounted on case with thermal conductivity paste

\[R_{\text{heatsink-case}} = \text{ca. 0,5…1 }^\circ \text{C/W} \]

Heatsink mounted on case with thermal conductivity paste and electrical-isolation-film

\[R_{\text{heatsink-case}} = \text{ca. 1…1,5 }^\circ \text{C/W} \]
Connecting
DC-DC Converters in Series
Galvanic isolation of the output allows multiple converters to be connected in series, simply by connecting the positive output of one converter to the negative of another (see figure 3). In this way non-standard voltage rails can be generated, however, the current output of the highest output voltage converter should not be exceeded.

When converters are connected in series, additional filtering is strongly recommended, as the converters switching circuits are not synchronised. As well as a summation of the ripple voltages, the output could also produce relatively large beat frequencies. A capacitor across the output will help, as will a series inductor (see filtering).

Connecting
DC-DC Converters in Parallel
If the available power output from a single converter is inadequate for the application, then multiple converters can be paralleled to produce a higher output power.

Recommended Values for Paralleled DC-DC Converters
The capacitance value used (Cout) should be approximately 1µF per parallel channel (i.e. for 2 parallel single output converters, 2µF between the common positive output and OV).

The same comments can be applied to the input circuit for converters whose inputs are paralleled, and similar values for inductance and input capacitance should be used as shown above.

In general, paralleling of converters should only be done when essential, and a higher power single converter is always a preferable solution. There should always be a correction factor of the maximum power rating to allow for mismatch between converters, and a selection at full load test is recommended, to ensure the output voltage is matched to within 1% or 2%. In general a factor of 0.9 should be used to provide a power safety margin per converter (e.g. 2 C/D paralleled should only be used up to a power level of 3.6W, not their 4W maximum). At most three DC-DC converters can be paralleled with a high level of confidence in the overall performance. If the circuit needs more power than three converters in parallel, then a single converter with a much higher power rating should be considered.

Regulated output DC-DC converters should not be paralleled, since their output voltage would need to be very accurately matched, to ensure even loading (to within the tolerance of the internal linear regulator). Paralleling regulated converters could cause one of the parts to be overloaded. If a high power regulated supply is required, it would be better to parallel unregulated converters and add an external linear regulator.

Filtering
All Recom isolated DC-DC converters have a fixed characteristic frequency at which the device operates. This fixed frequency allows filtering that is relatively simple compared to pulse-skipping types. In a pulse skipping converter a large range of frequencies are encountered, as the device adjusts the pulse interval for loading conditions.

When reducing the ripple from the converter, at either the input or the output, there are several aspects to be considered. Recom recommend filtering using simple passive LC networks at both input and output.
DC-DC Converter Applications

put (see figure 6). A passive RC network could be used, however, the power loss through a resistor is considered too high. The self-resonant frequency of the inductor needs to be significantly higher than the characteristic frequency of the DC-DC (typically 100kHz for Recom DC-DC converters). The DC current rating of the inductor also needs consideration, a rating of approximately twice the supply current is recommended. The DC resistance of the inductor is the final consideration that will give an indication of the DC power loss to be expected from the inductor.

The value of inductor and capacitor to use is given in the table above for the majority of Recom DC-DC converters. The capacitance is chosen to form a pi filter to match the input or output capacitor of the DC-DC converter. The inductor is chosen to cause heavy attenuation of the characteristic frequency when combined with the given capacitors.

Output Filtering calculation:
Calculating of the filtering components can be done using

\[t = \frac{1}{2\pi \sqrt{L_{\text{out}}C_0}} \]

This frequency should be significant lower than the switching frequency of the converter.

Example - RC series:
Operating frequency = 85kHz max.
\[f_c = 10\% \text{ of } 85 \text{kHz} = 8.5 \text{ kHz} \]
\[t = \frac{1}{2\pi \sqrt{L_{\text{out}}C_0}} \]
\[t = 8.5 \text{ kHz} \]
for:
\[L_{\text{out}} = 470 \mu\text{H} \]

\[C_0 = \frac{1}{(2\pi f_c)^2 L_{\text{out}}} = \frac{1}{(2\pi 8.5\text{kHz})^2 470 \mu\text{H}} = 745 \text{nF} \]

However, depending on your application-design and load-situation may interfere with the calculated filter so testing in the final application and re-adjustment of the component’s values may be necessary.

When choosing a value for the filtering capacitor please take care that the maximum capacitive load is within the specifications of the converter.

Limiting Inrush Current
Using a series inductor at the input will limit the current that can be seen at switch on (see figure 7). If we consider the circuit without the series inductor, then the input current is given by:

\[i = \frac{V}{R} \exp \left(-\frac{t}{RC} \right) \]

When the component is initially switched on (i.e. \(t=0 \)) this simplifies to:

\[i = \frac{V}{R} \]

This would imply that for a 5V input, with say 50mΩ track and wire resistance, the inrush current could be as large as 100A. This could cause a problem for the DC-DC converter.

A series input inductor therefore not only filters the noise from the internal switching circuit, but also limits the inrush current at switch on.

Maximum Output Capacitance
A simple method of reducing the output ripple is simply to add a large external capacitor. This can be a low cost alternative to the LC filter approach, although not as effective. There is also the possibility of causing start up problems, if the output capacitance is too large.

With a large output capacitance at switch on, there is no charge on the capacitors and the DC-DC converter immediately experiences a large current demand at its output. The inrush current can be so large as to exceed the ability of the DC-DC converter, and the device can go into an undefined mode of operation. In the worst case scenario the device can give a lower than expected DC output with a very high ripple. The DC-DC converter may survive this condition, however, the circuit being supplied is unlikely to function under this supply scheme.

Recom recommend a maximum safe operating value of 10μF for the output per channel. When used in conjunction with a series output inductor, this value can be raised to 47μF, should extremely low ripple be required.

Settling Time
The main reason for not fitting a series inductor internally is that, many applications require a fast power on time (there is also a size constraint with our miniature parts). When the power on voltage is a controlled fast ramp, then the output can respond within 500μs of the input reaching its target voltage (measured on a range of R/B and C/D components under full output load without external filters). The use of external filters and additional input or output capacitance will slow this reaction time. It is therefore left to the designer to decide on the predominant factors affecting their circuit, settling time, or noise performance.

Isolation Capacitance and Leakage Current
The isolation barrier within the DC-DC converter has a capacitance, which is a measure of the coupling between input and out-
put circuits. Providing this is the largest coupling source, a calculation of the leakage current between input and output circuits can be estimated.

Assuming we have a known isolation capacitance \(C_{is}\) (refer to DC-DC converter data) and a known frequency for either the noise or test signal, then the expected leakage current \(I_L\) between input and output circuits can be calculated from the impedance. The general isolation impedance equation for a given frequency \(f\) is given by:

\[
Z_f = \frac{1}{j2\pi f C_{is}}
\]

For an R05B05/RB0505D, the isolation capacitance is 18pF, hence the isolation impedance to a 50Hz test signal is:

\[
Z_{50} = \frac{1}{j2\pi \times 50 \times 18 \text{ pf}} = 177 \text{ M}\Omega
\]

If using a test voltage of 1kVrms, the leakage current is:

\[
i_L = \frac{V_{test}}{Z_f} = \frac{1000V}{177 \text{ M}\Omega} = 5.65 \mu A
\]

It can be easily observed from these simple equations that the higher the test or noise voltage, the larger the leakage current, also the lower the isolation capacitance, the lower the leakage current. Hence for low leakage current, high noise immunity designs, high isolation DC-DC converters should be selected with an appropriate low isolation capacitance.

Overload Protection

Although the use of filtering will prevent excessive current at power-on under normal operating conditions, there is no protection against an output circuit taking excessive power, or even going short-circuit. When this happens, the DC-DC converter will take a large input current to try to supply the output. Eventually the converter will overheat and destroy itself if this condition is not rectified (short circuit overload is only guaranteed for 1 s on an unregulated part).

There are several ways to prevent overload at the outputs destroying the DC-DC converter. The simplest being a straightforward fuse, sufficient tolerance for inrush current is required to ensure the fuse does not blow on power-on (see figure 8). Another simple scheme that can be applied is a circuit breaker.

There is also the potential to add some intelligence to the overload scheme by either detecting the input current, or the output voltage (see figure 9). The simplest implementation for overload protection at the input is to have the device supplied via a linear regulator with an internal thermal shutdown facility. This does however reduce the overall efficiency significantly.

If there is an intelligent power management system at the input, using a series resistor (in place of the series inductor) and detecting the voltage drop across the device to signal the management system can be used. A similar scheme can be used at the output to determine the output voltage, however, if the management system is on the input side, the signal will need to be isolated from the controller to preserve the system isolation barrier (see figure 10).

The thermal dissipation in a series resistor on the output can also be used to determine overload and preserve the isolation barrier. If a thermistor or other thermally sensitive device is mounted close to the resistor, this can be used to indicate an overload condition. System temperature will also need to be known to provide a suitable offset for different operating environments.

There are several other current limiting techniques that can be used to detect an overload situation, the suitability of these is

Figure 8: Simple Overload Protection

Figure 9: Input Monitored Overload Protection

Choose current limit (ILIMIT) and ground resistor (RGND) so that: \(0.7V = RGND \times ILIMIT\).
left to the designer. The most important thing to consider is how this information will be used. If the system needs to signal to a controller the location or module causing the overload, some form of intelligence will be needed. If the device simply needs to switch off, a simple fuse type arrangement will be adequate.

All Recom DC-DC converters, which include an internal linear regulator, have a thermal overload shut-down condition, which protects these devices from excessive overload. If this condition is to be used to inform a power management system, the most suitable arrangement is the output voltage detector (see figure 10a), since this will fall to near zero on shut-down. A thermal probe on the case of the DC-DC converter is also a possible solution.

Input Voltage Drop-Out (brown-outs)
When the input voltage drops, or is momentarily removed, the output circuit would suffer similar voltage drops. For short period input voltage drops, such as when other connected circuits have an instantaneous current demand, or devices are plug-ge’d in or removed from the supply rail while “hot”, a simple diode-capacitor arrangement can prevent the output circuit from being effected.

The circuit uses a diode feed to a large reservoir capacitor (typically 47µF electrolytic), which provides a short term reserve current source for the converter, the diode blocking other circuits from draining the capacitor over the supply rail. When combined with an in-line inductor this can also be used to give very good filtering. The diode volt drop needs to be considered in the power supply line under normal supply conditions. A low drop Schottky diode is recommended (see figure 11).

No Load Over Voltage Lock-Out
Unregulated DC-DC converters are expected to be under a minimum of 10% load, hence below this load level the output voltage is undefined. In certain circuits this could be a potential problem.

The easiest way to ensure the output voltage remains within a specified tolerance, is to add external resistors, so that there is always a 10% loading on the device (see figure 12). This is rather inefficient in that 10% of the power is always being taken by this load, hence only 90% is available to the additional circuitry.

Zener diodes on the output are another simple method. It is recommended that these be used with a series resistor or inductor, as when the Zener action occurs, a large current surge may induce signal noise into the system.

Long Distance Supply Lines
When the supply is transmitted via a cable, there are several reasons why using an isolated DC-DC converter is good design prac-
DC-DC Converter Applications

DC-DC Converter Applications

The noise pick up and EMC susceptibility of a cable is high compared to a PCB track. By isolating the cable via a DC-DC converter at either end, any cable pick-up will appear as common mode noise and should be self-cancelling at the converters.

Another reason is to reduce the cable loss by using a high voltage, low current power transfer through the cable and reconverting at the terminating circuit. This will also reduce noise and EMC susceptibility, since the noise voltage required to affect the rail, is also raised.

For example, compare a system having a 5V supply and requiring a 5V, 500mW output at a remote circuit. Assume the connecting cable has a 100Ω resistance. Using an R05B12/RB0512D to generate 24V and a R24A05/RA2405D to regenerate 5V, only a 21mA supply is required through the cable, a cable loss of 44mW.

LCD Display Bias

A LCD display typically requires a positive or negative 24V supply to bias the crystal. The R05024/RO-0524S (custom) converter was designed specifically for this application. Having an isolated OV output, this device can be configured as a +24V supply by connecting this to the GND input, or a –24V supply by connecting the +Vo output to GND (see figure 14).

EIA-232 Interface

In a mains powered PC often several supply rails are available to power a RS232 interface. However, battery operated PC’s or remote equipment having a RS232 interface added later, or as an option, may not have the supply rails to power a RS232 interface. Using a R05S12S/R05B12 is a simple single chip solution, allowing a fully EIA-232 compatible interface to be implemented from a single 5V supply rail, and only 2 additional components (see figure 15).

3V/5V Logic Mixed Supply Rails

There has been a lot of attention given to new I.C.’s and logic functions operating at what is rapidly emerging as the standard supply level for notebook and palmtop computers. The 3.3V supply is also gaining rapid acceptance as the defacto standard for personal telecommunications, however, not all circuit functions required are currently available in a 3.3V powered IC. The system designer therefore has previously had only two options available; use standard 5V logic or wait until the required parts are available in a 3V form, neither being entirely satisfactory and the latter possibly resulting in lost market share.

There is now another option, mixed logic functions running from separate supply rails. A single 3.3V line can be combined with a range of DC-DC converters from Recom, to generate voltage levels to run virtually any standard logic or interface IC. The Recom range includes dual output parts for powering analogue bipolar and amplifier functions (A/B series), as well a single output function for localised logic functions (L/M, N/O series). A typical example might be a RS232 interface circuit in a laptop PC using a 3.3V interface chip (such as the LT1330), which accepts 3.3V logic signals but requires a 5V supply (see figure 16). Recom has another variation on this theme and has developed two 5V to 3.3V step down DC-DC converters (R05L03/RL-0503 and R05003/R0-0503). These have been designed to allow existing systems to start incorporating available 3.3V I.C.’s without having to redesign their power supply.

This is particularly important when trying to reduce the overall power demand of a system, but not having available all of the functions at the 3.3V supply.

The main application for this range of devices are system designers, who want to
provide some functionality that requires a higher voltage than is available from the supply rail, or for a single localised function. Using a fully isolated supply is particularly useful in interface functions and systems maintaining separate analogue and digital ground lines.

Isolated Data Acquisition System

Any active system requiring isolation will need a DC-DC converter to provide the power transfer for the isolated circuit. In a data acquisition circuit there is also the need for low noise on the supply line; hence good filtering is required.

The circuit shown (see figure 17) provides a very high isolation barrier by using an G/H/J/K converter; to provide the power isolation and SFH610 opto-isolators for the data isolation. An overall system isolation of 2.5kV is achieved.

EMC Considerations

When used for isolating a local power supply and incorporating the appropriate filter circuits as illustrated in Fig. 17), DC-DC converters can present simple elegant solutions to many EMC power supply problems. The range of fixed frequency DC-DC converters is particularly suitable for use in EMC problem situations, as the stable fixed switching frequency gives easily characterised and easily filtered output.

The following notes give suggestions to avoid common EMC problems in power supply circuits. A more extensive discussion on other aspects of EMC is available in the Recom EMC Design Guidelines book.
DC-DC Converter Applications

Figure 16: RS232 Interface with 3V Logic

Figure 17: Isolated Serial ADC System
Power Supply Considerations

- Eliminate loops in supply lines (see figure 18).
- Decouple supply lines at local boundaries (use RCL filters with low Q, see figure 19).
- Place high speed sections close to the power line input, slowest section furthest away (reduces power plane transients, see figure 20).
- Isolate individual systems where possible (especially analogue and digital systems) on both power supply and signal lines (see figure 21).

An isolated DC-DC converter can provide a significant benefit to reducing susceptibility and conducted emission, due to isolating both power rail and ground from the system supply. The range of DC-DC converters available from Recom all utilise toroidal power transformers and as such have negligible EMI radiation (they also incorporate the recommended pcb layout suggestions as stated in Recom EMC Guidelines Data book).

Isolated DC-DC converters are switching devices and as such have a characteristic switching frequency, which may need some additional filtering. Some commercial converters offer a pulse-skipping technique, which although offering a flat efficiency response, gives a very wide spectral range of noise, since it does not have a fixed characteristic frequency. Recom devices feature a fixed frequency converter stage, which is stable across its full loading and temperature curve, hence it is very easy to filter the switching noise using a single series inductor.

Interpretation of DC-DC Converter EMC Data

Electromagnetic compatibility (EMC) of electrical and electronic products is a measure of electrical pollution. Throughout the world there are increasing statutory and regulatory requirements to demonstrate the EMC of end products. In Europe the EC directive 89/336/EEC requires that, any product sold after 1 January 1996 complies with a series of EMC limits, otherwise the product will be prohibited from sale within the EEC and the seller could be prosecuted and fined.

Although DC-DC converters are generally exempt from EMC regulations on the grounds that these are component items, it is the belief of Recom that the information on the EMC of these components can help designers ensure their end product can meet the relevant statutory EMC requirements. It must be remembered however, that the DC-DC converter is unlikely to be the last component in the chain to the mains supply, hence the information quoted needs interpretation by the circuit designer to determine its impact on the final EMC of their system.

Figure 18: Eliminate Loops in Supply Line

Figure 19: Decouple Supply Lines at Local Boundaries
Conducted and Radiated Emissions

There are basically two types of emissions covered by the EC directive on EMC, radiated and conducted. Conducted emissions are those transmitted over wire connecting circuits together and covers the frequency spectrum 150kHz to 30MHz. Radiated are those emissions transmitted via electromagnetic waves in air and cover the frequency spectrum 30MHz to 1GHz. Hence the EC directive covers the frequency spectrum 150kHz to 1GHz, but as two separate and distinct modes of transmission.

The Recom range of DC-DC converters features toroidal transformers within the component. These have been tested and proved to have negligible radiated noise. The low radiated noise is primarily due to toroidal shaped transformers maintaining the magnetic flux within the core, hence no magnetic flux is radiated by design. Due to the exceptionally low value of radiated emission, only conducted emissions are quoted.

Conducted emissions are measured on the input DC supply line. Unfortunately no standards exist for DC supplies, as most standards cover mains connected equipment. This poses two problems for a DC supplied device, firstly no standard limit lines can be directly applied, since the DC supplied device does not directly connect to the mains, also all reference material uses the earth-ground plane as reference point. In a DC system often the OV is the reference, however, for EMC purposes, it is probably more effective to maintain the earth as the reference, since this is likely to be the reference that the shielding or casing is connected to. Consequently all measurements quoted are referenced to the mains borne earth.

Line Impedance Stabilisation Network (LISN)

It is necessary to ensure that any measurement of noise is from the device under test (DUT) and not from the supply to this device. In mains connected circuits this is important and the mains has to be filtered prior to supply to the DUT. The same approach has been used in the testing of DC-DC converters and the DC supply to the converter was filtered, to ensure that no noise from the PSU as present at the measuring instrument.

A line impedance stabilisation network (LISN) conforming to CISPR 16 specification is connected to both positive and negative supply rails and referenced to mains earth (see figure 22). The measurements are all taken from the positive supply rail, with the negative rail measurement point terminated with 50W to impedance match the measurement channels.
Shielding

At all times the DUT, LISN’s and all cables connecting any measurement equipment, loads and supply lines are shielded. The shielding is to prevent possible pick-up on cables and DUT from external EMC sources (e.g. other equipment close by). The shielding is referenced to mains earth (see figure 22).

Line Spectra of DC-DC Converters

All DC-DC converters are switching devices, hence, will have a frequency spectra. Fixed input DC-DC converters have fixed switching frequency, for example the C/D range of converters has a typical switching frequency of 75kHz. This gives a stable and predictable noise spectrum regardless of load conditions.

If we examine the noise spectrum closely (see figure 23) we can see several distinct peaks, these arise from the fundamental switching frequency and its harmonics (odd labelled line spectra) and the full rectified spectra, at twice the fundamental switching frequency (even labelled line spectra). Quasi-resonant converters, such as the Recom range, have square wave switching waveforms, this produces lower ripple and a higher efficiency than soft switching devices, but has the drawback of having a relatively large spectrum of harmonics.

The EC regulations for conducted interference covers the bandwidth 150kHz to 30MHz. Considering a converter with a 100kHz nominal switching frequency, this would exhibit 299 individual line spectra. There will also be a variation of absolute switching frequency with production variation, hence a part with a 90kHz nominal frequency would have an additional 33 lines over the entire 30MHz bandwidth. Absolute input voltage also produces slight variation of switching frequency (see figure 24). Hence, to give a general level of conducted noise, we have used a 100kHz resolution bandwidth (RBW) to examine the spectra in the data sheets. This wide RBW gives a maximum level over all the peaks, rather than the individual line spectra. This is easier to read as well as automatically compensating for variances in switching frequency due to production variation or differences in absolute input voltage (see figure 25).

The conducted emissions are measured under full load conditions in all cases. Under lower loads the emission levels do fall, hence full load is the worst case condition for conducted line noise.

Temperature Performance of DC-DC Converters

The temperature performance of the DC-DC converters detailed in this book is always better than the quoted operating temperature range. The main reason for being conservative on the operating temperature range is the difficulty of accurately specifying parametric performance outside this temperature range.

There are some limiting factors which provide physical barriers to performance, such as the Curie temperature of the core material used in the DC-DC converter (the lowest Curie temperature material in use at Recom is 125°C). Ceramic capacitors are used almost exclusively in the DC-DC converters.
DC-DC Converter Applications

because of their high reliability and extended life properties, however, the absolute capacity of these can fall when the temperature rises above 85°C (ripple will increase). Other considerations are the power dissipation within the active switching components, although these have a very high temperature rating. Their current carrying capacity derates, as temperature exceeds 100°C.

Therefore this allows the DC-DC converters to be used above their specified operating temperature, providing the derating of power delivery given in the specification is adhered to. Components operating outside the quoted operating temperature range cannot be expected to exhibit the same parametric performance that is quoted in the specification.

An indication of the stability of a device can be obtained from the change in its operating frequency, as the temperature is varied (see figure 26). A typical value for the frequency variation with temperature is 0.5% per °C, a very low value compared to other commercial parts. This illustrates the ease of filtering of Recom DC-DC converters, since the frequency is so stable across load and temperature ranges.

Transfer Moulded Surface Mount DC-DC Converters

Component Placement

The recent introduction by Recom of a new and innovative method of encapsulating hybrid DC-DC converters in a transfer moulded (TM) thermoset epoxy plastic has enabled a new range of surface mount (SM) DC-DC converters to be brought to market, which addresses the component placement with SOIC style handling.

With any new component there are of course new lessons to be learned with the mounting technology. With the new SS/SD range of DC-DC converters, the lessons are not new as such, but may require different production techniques in certain applications.

Component Materials

The body of the TM product range is a high thermally conductive thermoset epoxy plastic. The advantage of thermoset materials in this application is that the body does not deform under post-cure heat cycles (i.e. under high temperature reflow conditions). Consequently there are no precautions required to protect the body during reflow. Other manufacturers components using thermoplastics may deform, or require a heat shield during the reflow process.

The lead frame is a copper material, hence it has a high conductivity and reduces the internal resistance of tracking within the DC-DC converters. Hybrid designs which use film deposition for tracking (or printed inks), feature higher losses within the DC-DC converter, due to their higher resistance. The leads are tinned with a 60:40 lead-tin (Pb:Sn) solder finish. This is a standard lead finish and compatible with virtually all solder mixes used in a production environment.

Component Alignment

The components can be aligned by either optical recognition or tweezing. If using tweezers alignment it should be ensured that the tweezers are aligning on the component body and not on the pins. The components themselves are symmetrical in the body, hence relatively easy to align using either method.

Solder Pad Design

The SS/SD range of DC-DC converters are designed on a pin pitch of 1.27mm (0.05”) with 1mm pad widths and 1.75mm pad lengths. This allows pads from one part to be used within a PCB CAD package for forming the pad layouts for other SS/SD parts. These pads are wider than many standard SOIC pad sizes (0.64mm) and CAD packages may not accommodate these pins with a standard SOIC pad pattern. It should be remembered that these components are power supply devices and as such need wider pads and thicker component leads to minimise resistive losses within the interconnects.

Pad patterns for each component are included in the relevant chapter. These should be followed where appropriate.

Solder Reflow Profile

RECOM’s SMD components are designed to withstand a maximum reflow temperature of 230°C (10 seconds) in accordance with any new component there are of course new lessons to be learned with the mounting technology. With the new SS/SD range of DC-DC converters, the lessons are not new as such, but may require different production techniques in certain applications.

Component Materials

The body of the TM product range is a high thermally conductive thermoset epoxy plastic. The advantage of thermoset materials in this application is that the body does not deform under post-cure heat cycles (i.e. under high temperature reflow conditions). Consequently there are no precautions required to protect the body during reflow. Other manufacturers components using thermoplastics may deform, or require a heat shield during the reflow process.

The lead frame is a copper material, hence it has a high conductivity and reduces the internal resistance of tracking within the DC-DC converters. Hybrid designs which use film deposition for tracking (or printed inks), feature higher losses within the DC-DC converter, due to their higher resistance. The leads are tinned with a 60:40 lead-tin (Pb:Sn) solder finish. This is a standard lead finish and compatible with virtually all solder mixes used in a production environment.

Component Alignment

The components can be aligned by either optical recognition or tweezing. If using tweezers alignment it should be ensured that the tweezers are aligning on the component body and not on the pins. The components themselves are symmetrical in the body, hence relatively easy to align using either method.

Solder Pad Design

The SS/SD range of DC-DC converters are designed on a pin pitch of 1.27mm (0.05") with 1mm pad widths and 1.75mm pad lengths. This allows pads from one part to be used within a PCB CAD package for forming the pad layouts for other SS/SD parts. These pads are wider than many standard SOIC pad sizes (0.64mm) and CAD packages may not accommodate these pins with a standard SOIC pad pattern. It should be remembered that these components are power supply devices and as such need wider pads and thicker component leads to minimise resistive losses within the interconnects.

Pad patterns for each component are included in the relevant chapter. These should be followed where appropriate.

One of the benefits of the SS/SD approach is that PCB layout can be produced for dual component usage. For example the SD dual output DC-DC converter pad layout can accommodate the SS product to give a single positive output voltage only, without any PCB tracking changes.

Component Alignment

The components can be aligned by either optical recognition or tweezing. If using tweezers alignment it should be ensured that the tweezers are aligning on the component body and not on the pins. The components themselves are symmetrical in the body, hence relatively easy to align using either method.

Solder Pad Design

The SS/SD range of DC-DC converters are designed on a pin pitch of 1.27mm (0.05”) with 1mm pad widths and 1.75mm pad lengths. This allows pads from one part to be used within a PCB CAD package for forming the pad layouts for other SS/SD parts. These pads are wider than many standard SOIC pad sizes (0.64mm) and CAD packages may not accommodate these pins with a standard SOIC pad pattern. It should be remembered that these components are power supply devices and as such need wider pads and thicker component leads to minimise resistive losses within the interconnects.

Pad patterns for each component are included in the relevant chapter. These should be followed where appropriate.

One of the benefits of the SS/SD approach is that PCB layout can be produced for dual component usage. For example the SD dual output DC-DC converter pad layout can accommodate the SS product to give a single positive output voltage only, without any PCB tracking changes.

Component Alignment

The components can be aligned by either optical recognition or tweezing. If using tweezers alignment it should be ensured that the tweezers are aligning on the component body and not on the pins. The components themselves are symmetrical in the body, hence relatively easy to align using either method.

Solder Pad Design

The SS/SD range of DC-DC converters are designed on a pin pitch of 1.27mm (0.05") with 1mm pad widths and 1.75mm pad lengths. This allows pads from one part to be used within a PCB CAD package for forming the pad layouts for other SS/SD parts. These pads are wider than many standard SOIC pad sizes (0.64mm) and CAD packages may not accommodate these pins with a standard SOIC pad pattern. It should be remembered that these components are power supply devices and as such need wider pads and thicker component leads to minimise resistive losses within the interconnects.

Pad patterns for each component are included in the relevant chapter. These should be followed where appropriate.

One of the benefits of the SS/SD approach is that PCB layout can be produced for dual component usage. For example the SD dual output DC-DC converter pad layout can accommodate the SS product to give a single positive output voltage only, without any PCB tracking changes.
with CECC 00802. If multiple reflow profiles are to be used (i.e. the part is to pass through several reflow ovens), it is recommended that lower ramp rates be used than the maximum specified in CECC 00802. Continual thermal cycling to this profile could cause material fatigue, if more than 5 maximum ramp cycles are used.

In general these parts will exceed the reflow capability of most IC and passive components on a PCB and should prove the most thermally insensitive component to the reflow conditions.

Recommended Solder Reflow Profile:
The following 2 graphs shows the typical recommended solder reflow profiles for SMD and through-hole cases.

The exact values of the profile’s peak and it’s max. allowed duration is also given in the datasheet of each converter.

For lead-free soldering (we offer our products lead-free-approved starting from 01/2005) this is still in development so please ask at our customer service for details until there is a general update on this.

Adhesive Requirements
If SM components are going to be wave soldered (i.e. in a mixed through hole and SM PCB) or are to be mounted on both sides of a PCB, then it is necessary to use an adhesive, to fix them to the board prior to reflow. The adhesive prevents the SM parts being “washed off” in a wave solder, and being “vibrated off” due to handling on a double sided SM board.

As mentioned previously, the Recom range of SM DC-DC converters are heavier than standard SOIC devices. The heavier weight is due to the size (volume) and internal hybrid construction. Consequently the parts place a larger than usual stress on their solder joints and leads, if these are the only method of attachment. Using an adhesive between component body and PCB can reduce this stress considerably. If the final system is to be subjected to shock and vibration testing, then using adhesive attachment is essential to ensure the parts pass these environmental tests.

The SS/SD range of DC-DC converters from Recom all have a stand-off beneath the component for the application of adhesive to be placed, without interfering with the sitting of the component. Method of adhesive dispensing and curing, plus requirements for environmental test and in-service replacement will determine suitability of adhesives rather than the component itself. However, having a thermoset plastic body, thermoset epoxy adhesive bonding between board and component is the recommended adhesive chemistry.

If the reflow stage is also to be used as a cure for a heat cure adhesive, then the component is likely to undergo high horizontal acceleration and deceleration during the pick and place operation. The adhesive must be sufficiently strong in its uncured (green) state, in order to keep the component accurately placed.

Adhesive Placement
The parts are fully compatible with the 3 main methods of adhesive dispensing: pin transfer, printing and dispensing. The method of placing adhesive will depend on the available processes in the production line and the reason for using adhesive attachment. For example, if the part is on a mixed through-hole and SM board, adhesive will have to be placed and cured prior to
reflow. If using a SM only board and heat cure adhesive, the reflow may be used as the cure stage. If requiring adhesive for shock and vibration, but using a conformal coat, then it may be possible to avoid a separate adhesive altogether, and the coating provides the mechanical restraint on the component body.

Patterns for dispensing or printing adhesive are given for automatic lines. If dispensing manually after placement the patterns for UV cure are easily repeated using a manual syringe (even if using heat cure adhesive). If dispensing manually, dot height and size are not as important, and the adhesive should be applied after the components have been reflowed. When dispensing after reflow, a chip underfill formulation adhesive would be the preferred choice. These types ‘wick’ under the component body and offer a good all round adhesion from a single dispensed dot.

The patterns shown allow for the process spread of the stand-off on the component, but do not account for the thickness of the PCB tracks. If thick PCB tracks are to be used, a grounded copper strip should be laid beneath the centre of the component (care should be exercised to maintain isolation barrier limits). The adhesive should not retard the pins reaching their solder pads during placement of the part, hence low viscosity adhesive is recommended.

The height of the adhesive dot, its viscosity and slumping properties are critical. The dot must be high enough to bridge the gap between board surface and component, but low enough not to slump and spread, or be squeezed by the component, and so contaminate the solder pads.

If wishing to use a greater number of dots of smaller diameter (common for pin transfer methods), the dot pattern can be changed, following a few simple guidelines. As the number of dots is doubled their diameter should be halved and centres should be at least twice the printed diameter from each other, but the dot height should remain at 0.4mm. The printed dot should always be positioned by at least its diameter from the nearest edge of the body to the edge of the dot. The number of dots is not important, provided good contact between adhesive and body can be guaranteed, but a minimum of 2 is recommended.

Cleaning
The thermoset plastic encapsulating material used for the Recom range of surface mount DC-DC converters is not fully hermetically sealed. As with all plastic encapsulated active devices, strongly reactive agents in hostile environments can attack the material and the internal parts, hence cleaning is recommended in inert solutions (e.g. alcohol or water based solvents) and at room temperature in an inert atmospheres (e.g. air or nitrogen).

A batch or linear aqueous cleaning process would be the preferred method of cleaning using a deionised water solution.

Custom DC-DC Converters
In addition to the standard ranges shown in this data book, Recom have the capability to produce custom DC-DC converters designed to your specific requirements. In general, the parts can be rapidly designed using computer based CAD tools to meet any input or output voltage requirements within the ranges of Recom standard products (i.e. up to 48V at either input or output). Prototype samples can also be produced in short timescales.

Custom parts can be designed to your specification, or where the part fits within a standard series, the generic series specification can be used. All custom parts receive the same stringent testing, inspection and quality procedures, as standard products. Recom custom parts are used in many applications, which are very specific to the individual customer, however, some typical examples are:

- ECL Logic driver
- Multiple cell battery configurations
- Telecommunications line equipment
- Marine apparatus
- Automotive electronics
- LCD display power circuitry
- Board level instrumentation systems

To discuss your custom DC-DC converter requirements, please contact Recom technical support desk or your local distributor.
Notes
Package Style and Pinning (mm)

A I Case: 31.8 x 20.3 x 10.2 mm

- **Bottom View**
 - 23
 - 22
 - 21
 - 20
- **Side View**
 - 19
 - 18
 - 17
 - 16

- Pin Pitch Tolerance ±0.35 mm

C2 Case: 33.02 x 33.02 x 17.8 mm

- **Side View**
 - 7
 - 6
 - 5
 - 4
- **Bottom View**
 - 3
 - 2

- Pin Pitch Tolerance ±0.3 mm

PI Case: 50.8 x 19 x 18 mm

- **Bottom View**
 - 5
 - 4
 - 3
 - 2
- **Side View**
 - 1
 - 0

- Pin Pitch Tolerance ±0.4 mm

LI Case: 45 x 35 x 18 mm

- **Side View**
 - 14
 - 13
 - 12
 - 11
- **Bottom View**
 - 10
 - 9
 - 8
 - 7

- Pin Pitch Tolerance ±0.25 mm

Q I Case: 68.6 x 50.8 x 20 mm

- **Bottom View**
 - 1
 - 2
 - 3
 - 4
- **Diagonal**
 - 10

- Pin Pitch Tolerance ±0.4 mm
The need for EMC

Most power converter tests are carried out with the general test set-up shown in Figure 1. Some general conditions which apply (except where noted) to test methods are outlined in these notes:

- Adequate DC power source, and normal DC input voltage
- +25°C ambient temperature
- Full rated output load

![Figure 1-1: EMC application test for: RP10-, RP12-, RP15-, RP20-, RP30-, RP40- and RP60-Serie](image)

\[L_1 = 1102.5 \mu H \quad DCR = 0.1 \Omega \]
\[C_1, C_2 = 47 \mu F \quad 100V \]

![Figure 1-2: EMC application test for: RP03-A Serie, RP05-A Serie and RP08-A Serie,](image)

\[L_1 = 497 \mu H \quad DCR = 55.1 m\Omega \]
\[C_1, C_2 = 47 \mu F \quad 100V \]

![Figure 1-3: General DC/DC converter test set-up](image)

Note: If the converter is under test with remote sense pins, connect these pins to their respective output pins. All tests are made in "Local sensing" mode.
Input Voltage Range

The minimum and maximum input voltage limits within which a converter will operate to specifications.

PI Filter

An input filter, consisting of two capacitors, is connected in parallel with a series inductor to reduce input reflected ripple current.

![PI Filter Diagram](image)

Output Voltage Accuracy

With nominal input voltage and rated output load from the test set-up, the DC output voltage is measured with an accurate, calibrated DC voltmeter. Output voltage accuracy is the difference between the measured output voltage and specified nominal value as a percentage. Output accuracy (as a%) is then derived by the formula:

\[
\text{Output Accuracy} = \frac{V_{\text{out}} - V_{\text{nom}}}{V_{\text{nom}}} \times 100
\]

where \(V_{\text{nom}}\) is the nominal, output specified in the converter data sheet.

Voltage Balance

For a multiple output power converter, the percentage difference in the voltage level of two outputs with opposite polarities and equal nominal values.

Line Regulations

Make and record the following measurements with rated output load at +25°C:

- Output voltage at nominal line (input) voltage. \(V_{\text{out N}}\)
- Output voltage at high line (input) voltage. \(V_{\text{out H}}\)
- Output voltage at low line (input) voltage. \(V_{\text{out L}}\)

The line regulation is \(V_{\text{out M}}\) (the maximum of the two deviations of output) for the value at nominal input in percentage.

\[
\text{Line Regulation} = \frac{V_{\text{out M}} - V_{\text{out N}}}{V_{\text{out N}}} \times 100
\]
Powerline – Definitions and Testing

Load Regulation

Make and record the following measurements with rated output load at +25°C:
- Output voltage with rated load connected to the output. \(V_{\text{out FL}} \)
- Output voltage with no load or the minimum specified load for the DC-DC converter. \(V_{\text{out ML}} \)

Load regulation is the difference between the two measured output voltages as a percentage of output voltage at rated load.

\[
\text{Load Regulation} = \frac{V_{\text{out ML}} - V_{\text{out FL}}}{V_{\text{out FL}}} \times 100
\]

Efficiency

The ratio of output load power consumption to input power consumption expressed as a percentage. Normally measured at full rated output power and nominal line conditions.

Switching Frequency

The rate at which the DC voltage is switched in a DC-DC converter or switching power supply.

Output Ripple and Noise

Because of the high frequency content of the ripple, special measurement techniques must be employed so that correct measurements are obtained. A 20MHz bandwidth oscilloscope is used, so that all significant harmonics of the ripple spike are included. This noise pickup is eliminated as shown in Figure 3, by using a scope probe with an external connection ground or ring and pressing this directly against the output common terminal of the power converter, while the tip contacts the voltage output terminal. This provides the shortest possible connection across the output terminals.

![Diagram of output ripple and noise](Figure 3)
Output Ripple and Noise (continued)

Figure 4 shows a complex ripple voltage waveform that may be present on the output of a switching power supply. There are three components in the waveform, first is a 120Hz component that originates at the input rectifier and filter, then there is the component at the switching frequency of the power supply, and finally there are small high frequency spikes imposed on the high frequency ripple.

 transient Recovery Time

The time required for the power supply output voltage to return to within a specified percentage of rated value, following a step change in load current.

Current Limiting

Input current drawn by a power supply with the output short circuited.

Fold Back Current Limiting

A method of protecting a power supply from damage in an overload condition, reducing the output current as the load approaches short circuit.
Powerline – Definitions and Testing

Isolation

The electrical separation between the input and output of a converter, (consisting of resistive and capacitive isolation) normally determined by transformer characteristics and circuit spacing.

Break-Down Voltage

The maximum DC voltage, which may be applied between the input and output terminal of a power supply without causing damage. Typical break-down voltage for DC-DC converters is 500VDC minimum.

Temperature Coefficient

With the power converter in a temperature test chamber with rated output load, make the following measurements:
- Output voltage at +25°C ambient temperature.
- Set the chamber for maximum operating ambient temperature and allow the power converter to stabilize for 15 to 30 minutes. Measure the output voltage.
- Set the chamber to minimum operating ambient temperature and allow the power converter to stabilize for 15 to 30 minutes.

Divide each percentage voltage deviation from the +25°C ambient value by the corresponding temperature change from +25°C ambient.

The temperature coefficient is the higher one of the two values calculated above, expressed as percent per change centigrade.

Ambient Temperature

The temperature of the still-air immediately surrounding an operating power supply.

Operating Temperature Range

The range of ambient or case temperature within a power supply at which it operates safely and meets its specifications.

Storage Temperature Range

The range of ambient temperatures within a power supply at non-operating condition, with no degradation in its subsequent operation.
Some converters from our Powerline offer the feature of trimming the output voltage in a certain range around the nominal value by using external trim resistors. Because different series use different circuits for trimming no general equation can be given for calculating the trim-resistors. Following trim-tables give values for choosing these trim-resistors. If voltages between the given trim-points are required a linear approximation of the next points is possible or using trimmable resistors may be considered.

Output Voltage Trimming:

RP20-, RP30- XX18S

<table>
<thead>
<tr>
<th>Trim up</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vout 1</td>
<td>1,818</td>
<td>1,836</td>
<td>1,854</td>
<td>1,872</td>
<td>1,89</td>
<td>1,908</td>
<td>1,926</td>
<td>1,944</td>
<td>1,962</td>
<td>1,98</td>
<td>Volts</td>
</tr>
<tr>
<td>RU 1</td>
<td>11,88</td>
<td>5,26</td>
<td>3,09</td>
<td>2,00</td>
<td>1,35</td>
<td>0,92</td>
<td>0,61</td>
<td>0,38</td>
<td>0,20</td>
<td>0,06</td>
<td>KOhms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trim down</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vout 2</td>
<td>1,782</td>
<td>1,764</td>
<td>1,746</td>
<td>1,728</td>
<td>1,71</td>
<td>1,692</td>
<td>1,674</td>
<td>1,656</td>
<td>1,638</td>
<td>1,62</td>
<td>Volts</td>
</tr>
<tr>
<td>RU 2</td>
<td>14,38</td>
<td>6,50</td>
<td>3,84</td>
<td>2,51</td>
<td>1,71</td>
<td>1,17</td>
<td>0,79</td>
<td>0,50</td>
<td>0,27</td>
<td>0,10</td>
<td>KOhms</td>
</tr>
</tbody>
</table>

RP20-, RP30- XX25S

<table>
<thead>
<tr>
<th>Trim up</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vout 1</td>
<td>2,525</td>
<td>2,55</td>
<td>2,575</td>
<td>2,6</td>
<td>2,625</td>
<td>2,65</td>
<td>2,675</td>
<td>2,7</td>
<td>2,725</td>
<td>2,75</td>
<td>Volts</td>
</tr>
<tr>
<td>RU 1</td>
<td>36,65</td>
<td>16,57</td>
<td>9,83</td>
<td>6,45</td>
<td>4,42</td>
<td>3,06</td>
<td>2,09</td>
<td>1,37</td>
<td>0,80</td>
<td>0,35</td>
<td>KOhms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trim down</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vout 2</td>
<td>2,475</td>
<td>2,45</td>
<td>2,425</td>
<td>2,4</td>
<td>2,375</td>
<td>2,35</td>
<td>2,325</td>
<td>2,3</td>
<td>2,275</td>
<td>2,25</td>
<td>Volts</td>
</tr>
<tr>
<td>RU 2</td>
<td>50,20</td>
<td>22,62</td>
<td>13,49</td>
<td>8,94</td>
<td>6,21</td>
<td>4,39</td>
<td>3,09</td>
<td>2,12</td>
<td>1,36</td>
<td>0,76</td>
<td>KOhms</td>
</tr>
</tbody>
</table>

RP15-, RP20-, RP30-, RP40- xx33S

<table>
<thead>
<tr>
<th>Trim up</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>RU 1</td>
<td>57,96</td>
<td>26,17</td>
<td>15,58</td>
<td>10,28</td>
<td>7,11</td>
<td>4,99</td>
<td>3,48</td>
<td>2,34</td>
<td>1,46</td>
<td>0,75</td>
<td>KOhms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trim down</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vout 2</td>
<td>3,267</td>
<td>3,234</td>
<td>3,201</td>
<td>3,168</td>
<td>3,135</td>
<td>3,102</td>
<td>3,069</td>
<td>3,036</td>
<td>3,003</td>
<td>2,97</td>
<td>Volts</td>
</tr>
<tr>
<td>RU 2</td>
<td>69,43</td>
<td>31,23</td>
<td>18,49</td>
<td>12,12</td>
<td>8,29</td>
<td>5,74</td>
<td>3,92</td>
<td>2,56</td>
<td>1,50</td>
<td>0,65</td>
<td>KOhms</td>
</tr>
</tbody>
</table>

RP40-, RP60- xx3305T (Trim for +3.3V)

<table>
<thead>
<tr>
<th>Trim up</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vout 1</td>
<td>5,05</td>
<td>5,1</td>
<td>5,15</td>
<td>5,2</td>
<td>5,25</td>
<td>5,3</td>
<td>5,35</td>
<td>5,4</td>
<td>5,45</td>
<td>5,5</td>
<td>Volts</td>
</tr>
<tr>
<td>RU 1</td>
<td>43,22</td>
<td>18,13</td>
<td>10,60</td>
<td>6,97</td>
<td>4,83</td>
<td>3,42</td>
<td>2,43</td>
<td>1,68</td>
<td>1,11</td>
<td>0,65</td>
<td>KOhms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trim down</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vout 2</td>
<td>4,95</td>
<td>4,9</td>
<td>4,85</td>
<td>4,8</td>
<td>4,75</td>
<td>4,7</td>
<td>4,65</td>
<td>4,6</td>
<td>4,55</td>
<td>4,5</td>
<td>Volts</td>
</tr>
<tr>
<td>RU 2</td>
<td>39,42</td>
<td>19,00</td>
<td>11,58</td>
<td>7,74</td>
<td>5,40</td>
<td>3,82</td>
<td>2,68</td>
<td>1,82</td>
<td>1,15</td>
<td>0,61</td>
<td>KOhms</td>
</tr>
</tbody>
</table>
Powerline – Definitions and Testing

RP15-, RP20- xx05D

<table>
<thead>
<tr>
<th>Trim up</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vout</td>
<td>10.1</td>
<td>10.2</td>
<td>10.3</td>
<td>10.4</td>
<td>10.5</td>
<td>10.6</td>
<td>10.7</td>
<td>10.8</td>
<td>10.9</td>
<td>11</td>
<td>Volts</td>
</tr>
<tr>
<td>R<sub>U</sub></td>
<td>90.50</td>
<td>40.65</td>
<td>24.06</td>
<td>15.76</td>
<td>10.79</td>
<td>7.47</td>
<td>5.10</td>
<td>3.33</td>
<td>1.95</td>
<td>0.84</td>
<td>KOhms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trim down</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vout</td>
<td>9.9</td>
<td>9.8</td>
<td>9.7</td>
<td>9.6</td>
<td>9.5</td>
<td>9.4</td>
<td>9.3</td>
<td>9.2</td>
<td>9.1</td>
<td>9</td>
<td>Volts</td>
</tr>
<tr>
<td>R<sub>D</sub></td>
<td>109.06</td>
<td>48.94</td>
<td>28.87</td>
<td>18.83</td>
<td>12.81</td>
<td>8.79</td>
<td>5.92</td>
<td>3.77</td>
<td>2.10</td>
<td>0.76</td>
<td>KOhms</td>
</tr>
</tbody>
</table>

RP15-, RP20-, RP30-, RP40-, RP60- xx12S

<table>
<thead>
<tr>
<th>Trim up</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vout</td>
<td>12.12</td>
<td>12.24</td>
<td>12.36</td>
<td>12.48</td>
<td>12.6</td>
<td>12.72</td>
<td>12.84</td>
<td>12.96</td>
<td>13.08</td>
<td>13.2</td>
<td>Volts</td>
</tr>
<tr>
<td>R<sub>U</sub></td>
<td>1019.45</td>
<td>257.41</td>
<td>134.39</td>
<td>84.06</td>
<td>56.68</td>
<td>39.47</td>
<td>27.65</td>
<td>19.03</td>
<td>12.47</td>
<td>7.30</td>
<td>KOhms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trim down</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vout</td>
<td>11.88</td>
<td>11.76</td>
<td>11.64</td>
<td>11.52</td>
<td>11.4</td>
<td>11.28</td>
<td>11.16</td>
<td>11.04</td>
<td>10.92</td>
<td>10.8</td>
<td>Volts</td>
</tr>
<tr>
<td>R<sub>D</sub></td>
<td>270.20</td>
<td>149.63</td>
<td>95.76</td>
<td>65.24</td>
<td>45.59</td>
<td>31.88</td>
<td>21.77</td>
<td>14.01</td>
<td>7.86</td>
<td>2.87</td>
<td>KOhms</td>
</tr>
</tbody>
</table>

RP15-, RP20, RP30-, RP60- xx12D

<table>
<thead>
<tr>
<th>Trim up</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>R<sub>U</sub></td>
<td>210.51</td>
<td>96.13</td>
<td>57.18</td>
<td>37.54</td>
<td>25.71</td>
<td>17.80</td>
<td>12.14</td>
<td>7.89</td>
<td>4.58</td>
<td>1.93</td>
<td>KOhms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trim down</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vout</td>
<td>23.76</td>
<td>23.52</td>
<td>23.28</td>
<td>23.04</td>
<td>22.8</td>
<td>22.56</td>
<td>22.32</td>
<td>22.08</td>
<td>21.84</td>
<td>21.6</td>
<td>Volts</td>
</tr>
<tr>
<td>R<sub>D</sub></td>
<td>283.54</td>
<td>125.47</td>
<td>73.95</td>
<td>48.40</td>
<td>33.14</td>
<td>22.99</td>
<td>15.76</td>
<td>10.34</td>
<td>6.13</td>
<td>2.76</td>
<td>KOhms</td>
</tr>
</tbody>
</table>

RP15-, RP20- RP30-, RP40-, RP60- xx15S

<table>
<thead>
<tr>
<th>Trim up</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vout</td>
<td>15.15</td>
<td>15.3</td>
<td>15.45</td>
<td>15.6</td>
<td>15.75</td>
<td>15.9</td>
<td>16.05</td>
<td>16.2</td>
<td>16.35</td>
<td>16.5</td>
<td>Volts</td>
</tr>
<tr>
<td>R<sub>U</sub></td>
<td>455.67</td>
<td>192.89</td>
<td>111.48</td>
<td>71.85</td>
<td>48.40</td>
<td>32.90</td>
<td>21.90</td>
<td>13.68</td>
<td>7.31</td>
<td>2.23</td>
<td>KOhms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trim down</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>R<sub>D</sub></td>
<td>449.01</td>
<td>210.22</td>
<td>125.38</td>
<td>81.89</td>
<td>55.46</td>
<td>37.68</td>
<td>24.92</td>
<td>15.30</td>
<td>7.80</td>
<td>1.78</td>
<td>KOhms</td>
</tr>
</tbody>
</table>

RP15-, RP20- RP30-, RP40-, RP60- xx15D

<table>
<thead>
<tr>
<th>Trim up</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vout</td>
<td>30.3</td>
<td>30.6</td>
<td>30.9</td>
<td>31.2</td>
<td>31.5</td>
<td>31.8</td>
<td>32.1</td>
<td>32.4</td>
<td>32.7</td>
<td>33</td>
<td>Volts</td>
</tr>
<tr>
<td>R<sub>U</sub></td>
<td>306.24</td>
<td>129.65</td>
<td>75.39</td>
<td>49.05</td>
<td>33.49</td>
<td>23.21</td>
<td>15.92</td>
<td>10.48</td>
<td>6.26</td>
<td>2.90</td>
<td>KOhms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trim down</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vout</td>
<td>29.7</td>
<td>29.4</td>
<td>29.1</td>
<td>28.8</td>
<td>28.5</td>
<td>28.2</td>
<td>27.9</td>
<td>27.6</td>
<td>27.3</td>
<td>27</td>
<td>Volts</td>
</tr>
<tr>
<td>R<sub>D</sub></td>
<td>300.42</td>
<td>142.30</td>
<td>85.77</td>
<td>56.73</td>
<td>39.05</td>
<td>27.16</td>
<td>18.60</td>
<td>12.16</td>
<td>7.13</td>
<td>3.10</td>
<td>KOhms</td>
</tr>
</tbody>
</table>
1. [Diagram of tube 1]

 TUBE LENGTH = 520mm ± 1.0

2. [Diagram of tube 2]

 TUBE LENGTH = 520mm ± 2.0

3. [Diagram of tube 3]

 TUBE LENGTH = 520mm ± 1.0

4. [Diagram of tube 4]

 TUBE LENGTH = 530mm ± 2.0

5. [Diagram of tube 5]

 TUBE LENGTH = 530mm ± 2.0

6. [Diagram of tube 6]

 TUBE LENGTH = 520mm ± 2.0
7.

TUBE LENGTH = 520mm ± 2.0

8.

TUBE LENGTH = 520mm ± 2.0

9.

TUBE LENGTH = 520mm ± 2.0

10.

TUBE LENGTH = 252mm ± 2.0

11.

TUBE LENGTH = 538mm ± 2.0
12. TUBE LENGTH = 292mm ± 2.0

13. TUBE LENGTH = 254mm ± 2.0

14. TUBE LENGTH = 275mm ± 2.0
Tubes

![Diagram of a tube](image)

TUBE LENGTH = 256mm ± 5.0

<table>
<thead>
<tr>
<th>No.</th>
<th>Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>RO, RM, RE, ROM, RB, RBM, RK, RH, RP, RU, RI, RD, REZ, RKZ, RUZ, RY,</td>
</tr>
<tr>
<td>2.</td>
<td>RS, RSO</td>
</tr>
<tr>
<td>3.</td>
<td>RL, RN, RF, RA, RC, RX</td>
</tr>
<tr>
<td>4.</td>
<td>RSS, RSD, RQS, RQD, RZ</td>
</tr>
<tr>
<td>5.</td>
<td>RTD, RTS, RSZ</td>
</tr>
<tr>
<td>6.</td>
<td>RV, RW, RxxPxx</td>
</tr>
<tr>
<td>7.</td>
<td>REC3-C(A), REC2.2-C(A)</td>
</tr>
<tr>
<td>8.</td>
<td>REC3, REC2.2, REC2.2-, REC3-, REC5-W(A,C)</td>
</tr>
<tr>
<td>9.</td>
<td>RAA</td>
</tr>
<tr>
<td>10.</td>
<td>RP1P5, RP03, RP05, RP08, RP12</td>
</tr>
<tr>
<td>11.</td>
<td>RP1P5-SMD, RP03-SMD, RP05-SMD, RP08-SMD</td>
</tr>
<tr>
<td>12.</td>
<td>REC10, REC15</td>
</tr>
<tr>
<td>13.</td>
<td>RP10, RP15, RP20, RP30, RP40-G</td>
</tr>
<tr>
<td>14.</td>
<td>REC20, REC30</td>
</tr>
<tr>
<td>15.</td>
<td>REC40-E</td>
</tr>
</tbody>
</table>
RSS-xxxx & RQS-xxxx tape outline dimensions

Sprocket hole Ø1.50+0.1/-0
Sprocket hole tolerance over any 10 pitches ± 0.2

2.00 mm

4.00 mm

1.75 mm

11.5 mm

24 mm ± 0.3

0.40 mm ± 0.05

16.00 mm

11.4 mm

7.6 mm

All dimensions in mm xx.xx ± 0.1

1. 10 sprocket hole pitch cumulative tolerance ± 0.20
2. All dimensions meet EIA-481-2 requirements
3. Component load per 13” reel : 500 pcs
4. The diameter of disc center hole is 13.0mm
RSD-xxxx & RQD-xxxx & RZ-xxxx tape outline dimensions

Sprocket hole Ø1.50±0.1/0
Sprocket hole tolerance over any 10 pitches ±0.2

2.00 mm
4.00 mm

17.75 mm

1.75 mm
11.5 mm

24 mm ±0.3

0.35 mm±0.05

16.00 mm

11.4 mm
7.6 mm

All dimensions in mm xx.xx ± 0.1

1. 10 sprocket hole pitch cumulative tolerance ± 0.20
2. All dimensions meet EIA-481-2 requirements
3. Component load per 13" reel: 500 pcs
4. The diameter of disc center hole is 13.0mm